Article 6316

Title of the article

ON SOLUBILITY OF HYPERSINGULAR INTEGRAL EQUATIONS

Authors

Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), boikov@pnzgu.ru

Index UDK

517.392

DOI

10.21685/2072-3040-2016-3-6

Abstract

Background. Hypersingular integral equations are an actively developing field of mathematical physics. It is associated with numerous applications of hypersingular integral equations in aerodynamics, electrodynamics, quantum physics, geophysics. Besides direct applications in physics and technology, hypersingular integral equations occur when solving boundary problems of mathematical physics. Recently there has been published a series of works devoted to approximate methods of solving hypersingular integral equations of first and second kind on closed and open integration contours. The interest to these methods is associated with direct applications of hypersingular integral equations in aerodynamics and electrodynamics. At the same time there is no general theory of hypersingular integral equations – there are no confirmations on existence and uniqueness of solutions of hypersingular integral equations. The present article describes a number of assertions on solubility of hypersingular integral equations. The presence of such assertions allows to use hypersingular integral equations more efficiently in many applications.
Materials and methods. During the study the author used methods of functional analysis, singular integral equations theory and generalized Riemann boundary problems. The article considers linear one-dimensional hypersingular integral equations on closed integration contours.
Results. The researcher obtained general confirmations on existence and uniqueness of hypersingular integral equations, set on closed integration contours.
Conclusions. The author obtained general confirmation on existence of solutions of hypersingular integral equations. When solving applied problems, these confirmations allow to set the problem of finding all solutions of a problem under consideration. The obtained results may be used for solving problems of aerodynamics, electrodynamics, when solving equations of mathematical physics by the method of boundary integral equations.

Key words

hypersingular integral equations, singular integral equations, generalized Riemann boundary problems, Noether theorems.

Download PDF
References

1. Gakhov F. D. Kraevye zadachi [Boundary problems]. Moscow: GIFML, 1963, 639 p.
2. Gokhberg I. Ts., Fel'dman I. A. Uravneniya v svertkakh i proektsionnye metody ikh resheniya [Convolution equations and projection methods of their solution]. Moscow: Hauka, 1971, 352 p.
3. Presdorf Z. Nekotorye klassy singulyarnykh uravneniy [Some classes of singular equations]. Moscow: Mir, 1979, 494 p.
4. Michlin S. G., Prossdorf S. Singular Integral Operatoren. [Singular integral operators]. Berlin: Acad. Verl., 1980.
5. Mikhlin S. G. Mnogomernye singulyarnye integraly i integral'nye uravneniya [Multidimensional singular integrals and integral equations]. Moscow: Fizmatgiz, 1962, 254 p.
6. Ivanov V. V. Teoriya priblizhennykh metodov i ee primenenie k chislennomu resheniyu singulyarnykh integral'nykh uravneniy [The theory of approximate methods and its application in numerical solution of singular integral equations]. Kiev: Naukova dumka, 1968, 287 p.
7. Prossdorf S., Silberman B. Numerical Analysis for Integral and Related Operator Equations. Berlin: Acad. Verl., 1991.
8. Lifanov I. K. Metod singulyarnykh integral'nykh uravneniy i chislennyy eksperiment [The method of singular integral equations and numerical experiment]. Moscow: Yanus, 1995, 520 p.
9. Boykov I. V. Priblizhennoe reshenie singulyarnykh integral'nykh uravneniy [Approximate solution of singular integral equations]. Penza: Izd-vo PGU, 2004, 316 p.
10. Nekrasov A M. Teoriya kryla v nestatsionarnom potoke gaza [The wing theory in nonstationary gas flow]. Moscow: Izd-vo AN SSSR, 1947, pp. 3–65.
11. Vaynikko G. M., Lifanov I. K., Poltavskiy L. N. Chislennye metody v gipersingulyarnykh integral'nykh uravneniyakh i ikh prilozheniya [Numerical methods in hypersingular integral equations and their applications]. Moscow: Yanus-K, 2001, 508 p.
12. Boykov I. V. Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov. Ch. II. Gipersingulyarnye integraly [Approximate computing methods for singular and hypersingular integrals. Part II. Hypersingular integrals]. Penza: Izd-vo PGU, 2009, 252 p.
13. Boykov I. V., Ventsel E. S., Boykova A. I. Appl. Num. Math. 2010, vol. 60, pp. 607–628.
14. Boykov I. V., Ventsel E. S., Roudnev V. A., Boykov A. I. Applied Numerical Mathematics. 2014, December, vol. 86, pp. 1–21
15. Boykov I. V., Boykova A. I., Semov M. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2015, no. 3 (35), pp. 11–27.
16. Mandal B. N., Chakrabani A. Applied Singular Integral Equations. New York: CR 
Press, 2011, 264 p.
17. Krikunov Yu. M. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta [Proceedings of Kazan State University]. 1956, vol. 116, iss. 4, pp. 3–30.
18. Adamar Zh. Zadacha Koshi dlya lineynykh uravneniy s chastnymi proizvodnymi giperbolicheskogo tipa [The Cauchy problem of linear equations with partial derivatives of hyperbolic type]. Moscow: Nauka, 1978, 351 p.
19. Chikin L. A. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta [Proceedings of Kazan State University]. 1953, vol. 113, no. 10, pp. 57–105.

 

Дата создания: 19.12.2016 11:18
Дата обновления: 19.12.2016 16:25